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Stable multipulse states in a nonlinear dispersive cavity with parametric gain
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Existence of stable trains of weakly overlapping solitary waves with phase alternation is predicted in a
nonlinear dispersive ring cavity with parametric amplification. It is shown that the breakup of the phase
invariance of the wave equation induced by the parametric interaction is effective in damping any internal
oscillations of the soliton lattice due to soliton interactions.

PACS numbgs): 42.65.Tg, 42.65.Ky, 03.40.Kf

The effects of a parametric interaction on a soliton propaby moving back along the hysteretic loop. Numerical simu-
gation in nonlinear dispersive media have recently attractethtions of the PGLE have shown that the modulational un-
an increasing interest in nonlinear optics both from a fundastable stationary state, corresponding to the upper branch of
mental as well from an applicative point of vigw—5]. The  the bifurcating solution, evolves toward irregular compli-
use of phase-sensitive amplifiers has been proposed as afted temporal patterri8]. Decreasing the parametric gain,
effective method for suppressing dispersive soliton radiatioimost periodic stationary states in the form of weakly over-
[1], Gordon-Haus jittef2,3], and the Raman self-frequency |apping solitary waves have been obserf@l The existence
shift [4] in optical soliton transmission systems. Parametricy¢ stationary periodic solutions of the PGLE, of which the
amplification also reduces the soliton-soliton interac{i®h solitary wave given by Eq2) is a limiting case, was already

Whe_n a parametric amplifier is included in a non_linear dis-pointed out by Miles in the context of Faraday way@k but
persive cavily, generation or storage of stable solitary pU|Seff1eir stability was not investigated. The fact that periodic
is possible[3,5]. In this case, the cavity field dynamics is

governed by a parametric Ginzburg-Landau equatior{mu!tiru'se _T,ttatesdare stable art]tract.ors OLth? P|GLE :S a tr_10n-
: : . rivial result and a comprehensive physical explanation
(PGLB), whose dimensionless form is thereof is needed. In fact, it is well known that the multipulse
dru=(—\+i9)u+ uu* +iat2u+i|u|2u, (1) states of t.he usual nonlinear S:(:d'rrmger equatior(such as
those arising from the modulational unstable homogeneous
wheret is the fast-time variableT is the slow-time variable State undergo a periodic wave pattern behavior, which is
describing field evolution at successive round trips;0 is ~ Closely related to the conservative nature of the equation
the dissipation factory is a detuning parameter, apd>0is  [10]- In terms of a quasiparticle perturbational approgict,
the parametric gain. Equatigfi) represents a general model this behavior may be interpreted as due to undamped, inter-
of pattern forming systems in many physical fie[@; in  Nal oscillations of the pulse lattice. When cavity losses are
particular, it was derived in hydrodynamics as a one-compensated for by use of a linear gain, the achievement of
dimensional model to study the onset of parametrically exihe periodic multipulse states in the cavity requires the use of
cited waves in the fluid systenig]. The possibility of gen- the external perturbing terms, such as filtering and nonlinear
erating stable pulse states within the dynamic modef@n or modulatior{12]. _ o
described by Eq(1) is closely related to the existence of a [N this report we show that the stationary periodic solu-
subcritical bifurcation wherny<0 [8]. An exact expression tons in the form of trains of solitary waves with a phase

of the solitary waves can be derived as a solution of thedlternation are stable states of the PGLE. The analysis is
PGLE([7,8]: based on a quasiparticle perturbational apprgadh exten-

sively used to study soliton interactions in the various soliton
-+ _ I systemg11-13, and is supported by numerical simulations
U(H) == 2Bset[B(t- 8 lexdio+ip(t-£)]. @ of the PGLE. Let us preliminarily note that E¢l) has a
where cos(@)=Mu with 0<e<m/4, B2=pu sin(2e)—7v, family of stationary periodic solutions given Kj¥]
=0, and¢ is an arbitrary constant parameter that reflects
the translational invariance of the equation. The double sign
in Eq. (2) defines what we will call the “charge(positive or u(t)=2kBen(Bt;k)explie), ()
negative of the soliton. Note that the presence of a phase-
sensitive term in the PGLE breaks the phase invariance
which is typical of the nonlinear Schdinger equation, pre- Wherecn(¢;K) is an elliptic cosine function of modulus
venting the emergence of a phase-variable term inBgas  (the family parameter cog2¢)=Nu and °=—[u sin(2¢)
indicated by the conditiony=0. Stability of the solitary —9)J/(1—2k). We assume 9<0, sin2¢)>0 and A<u
wave requires¥y<0 and\ < u< A%+ 92. In this case, the <A+ 92, so that the family parametér may vary in the
trivial zero solution is linearly stable, but it can be triggeredrange 1/2.k<1. Equation(3) represents a periodic function
into a nontrivial state by a finite disturbance or, equivalently,of t with period
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In the limitk— 17, the periodr diverges toward infinity and = oF 1 9 :,
the solitary wave2) is recovered. Fok~1 Eqg.(3) may be g —————— E
considered as composed by equally spaced solitary waves 5r 1 5T 7
with a charge alternation, since the elliptic cosine function I ]
changes sign once in a period. On the other hand, when 10— 00200 300 % 50 100 130 200

k—1/2, the periodr goes to zero, the peaks amplituge Slow Time Slow Time
diverges, and Eq(3) describes a wave collapse. Stability
analysis of the periodic stat€3) is a nontrivial matter and,
in general, it is d_|ff|c_:ult to deal with analyt|cal_ly. However charge. The parameters values krel, u=1.2, andd=— 2. The
for k~1, .t.he periodic stat¢3) may be apprommated as & jnitial soliton separation is 4 ifa) and 6 in(b).

superposition of weakly overlapping solitary waves, and a

guasiparticle perturbational approach may be followed. '”sponds to the periodic solutidB). The other family is com-
general, let us make the ansatz posed by solitons with the same charg® (;=34,). It is
expected that only the former configuration may be stable.
u(t,T)=2> V283.set B(t— &) lexdio+ivn(t—£)],  The periodr of the chain is arbitrary, and only the condition
n B=1 must be satisfied in order for the perturbation analysis
(5 to be valid. It should also be noted that these stationary states
strictly require an infinite number of solitons; however, they
can equivalently describe a finite multipulse state circulating
assumed to keep valid the weak overlap limit. The effects of & closed .IOOP’ 1.€., In an optical cavity. In this case, the
soliton spacing is not arbitrary, but may assume a discrete set

the soliton interactions on the internal oscillations of theOf values to satisfy the periodic boundary conditions. The
chain can be taken into consideration by allowing the soliton P y ’

parametersy,, and d&,/dT (which are zero for the single stability of the periodic states within the mechanical model
n n

soliton) to become small functions of the slow-timie It of Egs.(6) can be investigated by the standard linear stability

should be noted that, because the solitons are strongly driveZ%r;atg:';i'ella?eanzatlon of Eqs6) around the stationary

by the parametric gain, phases and amplitudes of the solitons

FIG. 1. Contour plot of the two-soliton propagation fay soli-
tons with an opposite charge, afi) for solitons with the same

where §,= =1 is the soliton chargeé, defines the soliton
position ¢, 1>¢&,), and the condition3(¢,,1—&,)>1 is

are rapidly attracted toward a stationary state that, at zeroth dé&, /dT=y, /m, (8a)
order, corresponds to the single solitary wave. This allows us
to consider stationary conditions in E() as far as soliton dip, /dT= =2\ +mr(épp 1+ €n_1—2&,), (8b)

amplitudes and phases are concerned. The coupled equations

for the soliton parameters,, and &, may be derived by use wherer = +88%exp(—B7)/m (the upper sign is for solitons
of the single-soliton perturbation theof¢1]. Because soli- with same charge The secular equation, which determines
ton interactions decrease exponentially with soliton separathe eigenvalues associated with Eq$8), may be expressed
tion, only the nearest-neighbor effects are considered. Nen the form defta;; ]=0, where the matrix coefficients are

glecting higher-order terms, we obtain given by a;; =g+ 2 o+2r fori=j, aj=—rfori=jx1
and a;;=0, otherwise. Stability is ensured provided that
dé,/dT= ¢, /m, (68  real (¢)<0. For a chain oN solitons and assuming absorb-

. ing boundaries, we obtain?+2\o=—4r sirf[la/2(N+1)],
dipn [dT=—2u COL2¢) o+ 8B Sn0n 118X — B(én+1 wherel=1,2,... ,N. The condition realf)<O is satisfied
_ _ _ _ for r>0 [14]; therefore the soliton chain with a charge al-
6,0,_ 16X _ 6b
6017 0ndn—18xH ~ A= En-1) ]} (6b) ternation is the only stable state. It is remarkable to note that

where m=[2— 72usin(2)/382]~ 1. Equations(6) may be the viscous force induced by the parametric excitation plays

regarded as the canonical equations of motion for the inter@ fundamental role in damping any internal oscillations of
acting charged particles of massin the potential the chain, which would be allowed if the dynamical system

(6) were conservative. To get further insights into this point,
) note that, due to the strong damping induced by the viscous
U(é1,62, - '):_EI 8B701+1518Xd — B(&+1— )] force, the momenta),, may be adiabatically eliminated in
) Egs. (8). In this way, small motions of the solitons around
the stationary state are described by a discrete diffusion
under the action of a viscous force of strengthequation, which is stable provided that-0. Predictions of
2u cos(2p)=2\. From Eq.(7) it follows that, as already the perturbation analysis are well confirmed by the direct
observed in Ref[3], solitons with sameopposit¢ charges numerical simulations of Eq1). In Fig. 1, a typical evolu-
attract(repe). The dynamical syster{6) has two families of tion of a soliton pair is reported. It is remarkable that, in Fig.
stationary solutions, both corresponding to periodic state&(b), the two attracting solitons do not collide elastically, but
with &,,,1—&,=7, 7 being the common distance between collapse into a single soliton with the same charge as that of
the consecutive solitons. The first one describes a chain dhe colliding pulses. During the collapse, half of the field
solitons with charge alternations{.,=—45,), and corre- energy is transferred into dispersive waves, which are rapidly
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FIG. 3. Propagation of the periodic stationary state given by Eq.
FIG. 2. Contour plot of the propagation of the four-soliton (3) for (a) k=0.9, and(b) k=0.7, with the other parameter values
pulses with a charge alternation. The parameters values arg as in Fig. 2. In(a), the instability leads to a breakup of the periodic
u=1.5, andd=—2. state into two pulses with the same charge, wheredb)iit mani-
fests as an irregular oscillation of the lattice.
attenuated in the propagation. This phenomenon is quite gen-
eral, and the multipulse states formed by solitons with thanstability which does not lead to the destruction of the pe-
same charges evolve, after successive collapses, towardriadic state, but results in irregular oscillations of the pulse
single stationary soliton. On the contrary, we observed thagmplitudes, as shown in Fig(i8. It should be noted that the
multisoliton states with a charge alternation evolve toward dose of stability when the soliton spacing becomes narrow is
stationary periodic state, as predicted by the previous analysrobably a very general feature as it was observed in other
sis. This is shown in Fig. 2 for the case of four differently soliton systemg12,15, and is not strictly related to the
spaced solitons. In order to simulate periodic transit of theeGLE model.
pulses in the cavity, Eq1) was integrated assuming periodic  In conclusion, it has been shown both numerically and
boundary conditions. Note that the final soliton spacing isanalytically that periodic chains of parametrically excited
determined solely by the initial solitons number and by thesolitary pulses with charge alternation may stably propagate
extension of the integration window, which fixes the cavityin a nonlinear dispersive cavity. Suppression of the internal
transit time. oscillations of the chain is efficiently achieved by the para-
Finally, it is natural to wonder whether E¢B) still rep-  metric amplification itself and an introduction of external
resents a stable solution of the PGLE beyond the limit ofperturbing terms, such as filtering and nonlinear gain, is not
applicability of the perturbation analysis, i.e., beyond theneeded. These results may be of interest in nonlinear optics
limit k~ 1. Numerical integration of Eq1) indicates that the  for ultrashort pulse generation and for soliton storage at high
stability of the periodic state is lost when the family param-frequency.
eterk is taken away from one. As an example, in Figa)3
the evolution of the field intensity fok=0.9 is reported, | wish to thank P. Laporta and A. Geraci for helpful com-
showing the breakup of the original periodic state into twoments. | also thank P. Kumar for bringing Ré8] to my
pulses. Decreasing further the paramdterve observed an attention.
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