
Stable multipulse states in a nonlinear dispersive cavity with parametric gain

Stefano Longhi
Centro di Elettronica Quantistica e Strumentazione Elettronica del Consiglio Nazionale delle Ricerche,

Dipartimento di Fisica del Politecnico, Piazza L. da Vinci 32, 20133 Milano, Italy
~Received 10 November 1995!

Existence of stable trains of weakly overlapping solitary waves with phase alternation is predicted in a
nonlinear dispersive ring cavity with parametric amplification. It is shown that the breakup of the phase
invariance of the wave equation induced by the parametric interaction is effective in damping any internal
oscillations of the soliton lattice due to soliton interactions.

PACS number~s!: 42.65.Tg, 42.65.Ky, 03.40.Kf

The effects of a parametric interaction on a soliton propa-
gation in nonlinear dispersive media have recently attracted
an increasing interest in nonlinear optics both from a funda-
mental as well from an applicative point of view@1–5#. The
use of phase-sensitive amplifiers has been proposed as an
effective method for suppressing dispersive soliton radiation
@1#, Gordon-Haus jitter@2,3#, and the Raman self-frequency
shift @4# in optical soliton transmission systems. Parametric
amplification also reduces the soliton-soliton interaction@3#.
When a parametric amplifier is included in a nonlinear dis-
persive cavity, generation or storage of stable solitary pulses
is possible@3,5#. In this case, the cavity field dynamics is
governed by a parametric Ginzburg-Landau equation
~PGLE!, whose dimensionless form is

]Tu5~2l1 iq!u1mu*1 i ] t
2u1 i uuu2u, ~1!

wheret is the fast-time variable,T is the slow-time variable
describing field evolution at successive round trips,l.0 is
the dissipation factor,q is a detuning parameter, andm.0 is
the parametric gain. Equation~1! represents a general model
of pattern forming systems in many physical fields@6#; in
particular, it was derived in hydrodynamics as a one-
dimensional model to study the onset of parametrically ex-
cited waves in the fluid systems@7#. The possibility of gen-
erating stable pulse states within the dynamic model
described by Eq.~1! is closely related to the existence of a
subcritical bifurcation whenq,0 @8#. An exact expression
of the solitary waves can be derived as a solution of the
PGLE @7,8#:

u~ t !56A2bsech@b~ t2j!#exp@ iw1 ic~ t2j!#, ~2!

where cos(2w)5l/m with 0,w,p/4, b25m sin(2w)2q,
c50, andj is an arbitrary constant parameter that reflects
the translational invariance of the equation. The double sign
in Eq. ~2! defines what we will call the ‘‘charge’’~positive or
negative! of the soliton. Note that the presence of a phase-
sensitive term in the PGLE breaks the phase invariance
which is typical of the nonlinear Schro¨dinger equation, pre-
venting the emergence of a phase-variable term in Eq.~2!, as
indicated by the conditionc50. Stability of the solitary
wave requiresq,0 andl,m,Al21q2. In this case, the
trivial zero solution is linearly stable, but it can be triggered
into a nontrivial state by a finite disturbance or, equivalently,

by moving back along the hysteretic loop. Numerical simu-
lations of the PGLE have shown that the modulational un-
stable stationary state, corresponding to the upper branch of
the bifurcating solution, evolves toward irregular compli-
cated temporal patterns@9#. Decreasing the parametric gain,
almost periodic stationary states in the form of weakly over-
lapping solitary waves have been observed@9#. The existence
of stationary periodic solutions of the PGLE, of which the
solitary wave given by Eq.~2! is a limiting case, was already
pointed out by Miles in the context of Faraday waves@7#, but
their stability was not investigated. The fact that periodic
multipulse states are stable attractors of the PGLE is a non-
trivial result and a comprehensive physical explanation
thereof is needed. In fact, it is well known that the multipulse
states of the usual nonlinear Schro¨dinger equation~such as
those arising from the modulational unstable homogeneous
state! undergo a periodic wave pattern behavior, which is
closely related to the conservative nature of the equation
@10#. In terms of a quasiparticle perturbational approach@11#,
this behavior may be interpreted as due to undamped, inter-
nal oscillations of the pulse lattice. When cavity losses are
compensated for by use of a linear gain, the achievement of
the periodic multipulse states in the cavity requires the use of
the external perturbing terms, such as filtering and nonlinear
gain or modulation@12#.

In this report we show that the stationary periodic solu-
tions in the form of trains of solitary waves with a phase
alternation are stable states of the PGLE. The analysis is
based on a quasiparticle perturbational approach@11#, exten-
sively used to study soliton interactions in the various soliton
systems@11–13#, and is supported by numerical simulations
of the PGLE. Let us preliminarily note that Eq.~1! has a
family of stationary periodic solutions given by@7#

u~ t !5A2kbcn~bt;k!exp~ iw!, ~3!

wherecn(j;k) is an elliptic cosine function of modulusk
~the family parameter!, cos~2w!5l/m and b252@m sin~2w!
2q#/~122k!. We assumeq,0, sin~2w!.0 and l,m
,Al21q2, so that the family parameterk may vary in the
range 1/2,k,1. Equation~3! represents a periodic function
of t with period
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0
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dv@12k sin2~v!#21. ~4!

In the limit k→12, the periodt diverges toward infinity and
the solitary wave~2! is recovered. Fork'1 Eq. ~3! may be
considered as composed by equally spaced solitary waves
with a charge alternation, since the elliptic cosine function
changes sign once in a period. On the other hand, when
k→1/2, the periodt goes to zero, the peaks amplitudeb
diverges, and Eq.~3! describes a wave collapse. Stability
analysis of the periodic states~3! is a nontrivial matter and,
in general, it is difficult to deal with analytically. However
for k'1, the periodic state~3! may be approximated as a
superposition of weakly overlapping solitary waves, and a
quasiparticle perturbational approach may be followed. In
general, let us make the ansatz

u~ t,T!5(
n

A2bdnsech@b~ t2jn!#exp@ iw1 icn~ t2jn!#,

~5!

wheredn561 is the soliton charge,jn defines the soliton
position (jn11.jn), and the conditionb(jn112jn)@1 is
assumed to keep valid the weak overlap limit. The effects of
the soliton interactions on the internal oscillations of the
chain can be taken into consideration by allowing the soliton
parameterscn and djn /dT ~which are zero for the single
soliton! to become small functions of the slow-timeT. It
should be noted that, because the solitons are strongly driven
by the parametric gain, phases and amplitudes of the solitons
are rapidly attracted toward a stationary state that, at zeroth
order, corresponds to the single solitary wave. This allows us
to consider stationary conditions in Eq.~5! as far as soliton
amplitudes and phases are concerned. The coupled equations
for the soliton parameterscn andjn may be derived by use
of the single-soliton perturbation theory@11#. Because soli-
ton interactions decrease exponentially with soliton separa-
tion, only the nearest-neighbor effects are considered. Ne-
glecting higher-order terms, we obtain

djn /dT5cn /m, ~6a!

dcn /dT522m cos~2w!cn18b3$dndn11exp@2b~jn11

2jn!#2dndn21exp@2b~jn2jn21!#% ~6b!

wherem5@22p2msin(2w)/3b2#21. Equations~6! may be
regarded as the canonical equations of motion for the inter-
acting charged particles of massm in the potential

U~j1 ,j2 , . . . !52(
l
8b2d l11d lexp@2b~j l112j l !#

~7!

under the action of a viscous force of strength
2m cos(2w)52l. From Eq. ~7! it follows that, as already
observed in Ref.@3#, solitons with same~opposite! charges
attract~repel!. The dynamical system~6! has two families of
stationary solutions, both corresponding to periodic states
with jn112jn5t, t being the common distance between
the consecutive solitons. The first one describes a chain of
solitons with charge alternation (dn1152dn), and corre-

sponds to the periodic solution~3!. The other family is com-
posed by solitons with the same charge (dn115dn). It is
expected that only the former configuration may be stable.
The periodt of the chain is arbitrary, and only the condition
bt@1 must be satisfied in order for the perturbation analysis
to be valid. It should also be noted that these stationary states
strictly require an infinite number of solitons; however, they
can equivalently describe a finite multipulse state circulating
in a closed loop, i.e., in an optical cavity. In this case, the
soliton spacing is not arbitrary, but may assume a discrete set
of values to satisfy the periodic boundary conditions. The
stability of the periodic states within the mechanical model
of Eqs.~6! can be investigated by the standard linear stability
analysis. Linearization of Eqs.~6! around the stationary
states yields

djn /dT5cn /m, ~8a!

dcn /dT522lcn1mr~jn111jn2122jn!, ~8b!

where r578b4exp(2bt)/m ~the upper sign is for solitons
with same charge!. The secular equation, which determines
the eigenvaluess associated with Eqs.~8!, may be expressed
in the form det@ai j #50, where the matrix coefficients are
given byai j5s212ls12r for i5 j , ai j52r for i5 j61
and ai j50, otherwise. Stability is ensured provided that
real (s),0. For a chain ofN solitons and assuming absorb-
ing boundaries, we obtains 212ls524r sin2@lp/2~N11!#,
where l51,2, . . . ,N. The condition real(s),0 is satisfied
for r.0 @14#; therefore the soliton chain with a charge al-
ternation is the only stable state. It is remarkable to note that
the viscous force induced by the parametric excitation plays
a fundamental role in damping any internal oscillations of
the chain, which would be allowed if the dynamical system
~6! were conservative. To get further insights into this point,
note that, due to the strong damping induced by the viscous
force, the momentacn may be adiabatically eliminated in
Eqs. ~8!. In this way, small motions of the solitons around
the stationary state are described by a discrete diffusion
equation, which is stable provided thatr.0. Predictions of
the perturbation analysis are well confirmed by the direct
numerical simulations of Eq.~1!. In Fig. 1, a typical evolu-
tion of a soliton pair is reported. It is remarkable that, in Fig.
1~b!, the two attracting solitons do not collide elastically, but
collapse into a single soliton with the same charge as that of
the colliding pulses. During the collapse, half of the field
energy is transferred into dispersive waves, which are rapidly

FIG. 1. Contour plot of the two-soliton propagation for~a! soli-
tons with an opposite charge, and~b! for solitons with the same
charge. The parameters values arel51, m51.2, andq522. The
initial soliton separation is 4 in~a! and 6 in~b!.
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attenuated in the propagation. This phenomenon is quite gen-
eral, and the multipulse states formed by solitons with the
same charges evolve, after successive collapses, toward a
single stationary soliton. On the contrary, we observed that
multisoliton states with a charge alternation evolve toward a
stationary periodic state, as predicted by the previous analy-
sis. This is shown in Fig. 2 for the case of four differently
spaced solitons. In order to simulate periodic transit of the
pulses in the cavity, Eq.~1! was integrated assuming periodic
boundary conditions. Note that the final soliton spacing is
determined solely by the initial solitons number and by the
extension of the integration window, which fixes the cavity
transit time.

Finally, it is natural to wonder whether Eq.~3! still rep-
resents a stable solution of the PGLE beyond the limit of
applicability of the perturbation analysis, i.e., beyond the
limit k'1. Numerical integration of Eq.~1! indicates that the
stability of the periodic state is lost when the family param-
eterk is taken away from one. As an example, in Fig. 3~a!
the evolution of the field intensity fork50.9 is reported,
showing the breakup of the original periodic state into two
pulses. Decreasing further the parameterk, we observed an

instability which does not lead to the destruction of the pe-
riodic state, but results in irregular oscillations of the pulse
amplitudes, as shown in Fig. 3~b!. It should be noted that the
lose of stability when the soliton spacing becomes narrow is
probably a very general feature as it was observed in other
soliton systems@12,15#, and is not strictly related to the
PGLE model.

In conclusion, it has been shown both numerically and
analytically that periodic chains of parametrically excited
solitary pulses with charge alternation may stably propagate
in a nonlinear dispersive cavity. Suppression of the internal
oscillations of the chain is efficiently achieved by the para-
metric amplification itself and an introduction of external
perturbing terms, such as filtering and nonlinear gain, is not
needed. These results may be of interest in nonlinear optics
for ultrashort pulse generation and for soliton storage at high
frequency.
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FIG. 2. Contour plot of the propagation of the four-soliton
pulses with a charge alternation. The parameters values arel51,
m51.5, andq522.

FIG. 3. Propagation of the periodic stationary state given by Eq.
~3! for ~a! k50.9, and~b! k50.7, with the other parameter values
as in Fig. 2. In~a!, the instability leads to a breakup of the periodic
state into two pulses with the same charge, whereas in~b! it mani-
fests as an irregular oscillation of the lattice.
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